Vessel Level Annual Cost-Earnings Study of the Hawaii Offshore Handline Fishery and the Hawaii Small Boat Commercial Fishery, 2014

Hing Ling Chan and Minling Pan

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Pacific Islands Fisheries Science Center
NOAA Technical Memorandum NMFS-PIFSC-80
https://doi.org/10.25923/zffy-5a13
March 2019

Vessel Level Annual Cost-Earnings Study of the Hawaii Offshore Handline Fishery and the Hawaii Small Boat Commercial Fishery, 2014

Hing Ling Chan ${ }^{1}$ and Minling Pan²
${ }^{1}$ Joint Institute for Marine and Atmospheric Research
University of Hawaii
1000 Pope Road
Honolulu, Hawaii 96822
${ }^{2}$ Pacific Islands Fisheries Science Center
National Marine Fisheries Service
1845 Wasp Boulevard, Building 176
Honolulu, Hawaii 96818

NOAA Technical Memorandum NMFS-PIFSC-80
March 2019
U.S. Department of Commerce

Wilbur L. Ross, J., Secretary
National Oceanic and Atmospheric Administration
Benjamin Friedman, Acting NOAA Administrator
National Marine Fisheries Service
Chris Oliver, Assistant Administrator for Fisheries

Recommended citation:

Chan HL, Pan M. 2019. Vessel Level Annual Cost-Earnings Study of the Hawaii Offshore Handline Fishery and the Hawaii Small Boat Commercial Fishery, 2014. NOAA Tech. Memo. NMFS-PIFSC-80, 50 p. doi:10.25923/zffy-5a13.

Copies of this report are available from:
Science Operations Division
Pacific Islands Fisheries Science Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
1845 Wasp Boulevard, Building \#176
Honolulu, Hawaii 96818
Or online at:
https://www.pifsc.noaa.gov/library/

Executive Summary

This report presents an assessment of the annual economic performance of the Hawaii offshore handline fishery and the Hawaii small boat commercial fishery using data collected from the cost-earnings survey of Hawaii small boats in 2014, which was comprised of 1,796 small boat and offshore handline fishermen. Response to the survey was voluntary. Three types of fishermen are included in the analysis; offshore handline fishermen, full-time small boat commercial fishermen, and part-time small boat commercial fishermen. Offshore handline fishermen are defined based on their fishing location and gear usage as described in fishing reports submitted to the State of Hawaii Division of Aquatic Resources (HDAR). Full-time commercial and part-time commercial fishermen are defined based on their self-identified motivations as reported in the 2014 Hawaii Small Boat Economic Survey (Chan and Pan 2017).

This report presents the first vessel-level assessment of the cost-earnings status of the Hawaii offshore handline and small boat commercial fisheries. Prior to this study, the annual economic performance of these fisheries was not evaluated. The recent report on the Hawaii small boat fishery (Chan and Pan 2017) described social and economic characteristics on a per trip basis, but it did not include the offshore handline fishery due to divergent characteristics. The offshore handline fishery uses a variety of gear, including pelagic handline, troll, and other specialized gear (ika shibi and palu ahi) to target juvenile bigeye and yellowfin tuna at offshore seamounts and weather buoys. It employs a small group of relatively large vessels (~ 45 feet vs. ~ 23 feet) that travel long distances to fishing grounds (150-250 miles vs. more active vessels within state waters), operates with multi-day trips (averaging 4.9 days vs. single day) with multiple crew members ($2-5$ people vs. 2 people), and catches per trip range from 2,000 to 8,000 pounds for a five-day trip relative to 80 pounds for the small boats (Itano 1999; Chan and Pan 2017). The offshore handline fishing participation peaked in the 1990s, but has steadily declined to relatively few fishermen (Glazier et al. 2001).

Economic performance varies among fishermen types. One way to evaluate the economic performance is in terms of annual net return, which is defined as annual value of fish sold minus annual trip costs and annual fixed costs. Labor costs were not considered in the calculation of annual net return because most of the offshore handline and small boat fishing is owner operated, and the crew on small boat fishing vessels is mostly family or friends who do not get paid by hour. The study shows that offshore handline fishermen, on average, earned a net return of approximately $\$ 240,000$ per year per vessel. About half of their annual value of fish sold (48% of $\$ 460,000$) covered trip costs and fixed costs. Full-time small boat commercial fishermen, on average, managed to cover trip costs and fixed costs in their fishing operations, with 61% of their annual value of fish sold paying for trip costs and 29% paying for fixed costs, when only accounting the commercial value of fish actually sold. Thus, they averaged a net return of \$3,978 per year. Part-time commercial fishermen experienced a net loss, on average, of $\$ 4,639$ per year since their value of fish sold covered only trip costs but not fixed costs. However, the net returns varied greatly among small boat fishermen, and some (50% full-time and 21% part-time) were able to earn positive net returns.

Though self-identified as full-time or part-time commercial fishermen, a large portion of their catch was not sold in the market. Specifically, 21% of full-time commercial fishermen's catch and 25% of part-time commercial fishermen's catch were retained for home consumption or
given away to friends and family. Therefore, if we consider the unsold fish value as part of the "earnings" of the fisheries, there would be increased positive earnings in the small boat fishery. If we calculate the value of fish sold by assuming that all of the catch kept for home consumption or given away was also sold, and the quality, species composition, and market prices of sold and unsold fish were the same, it would increase the annual value by $\$ 11,124$, on average, for fulltime commercial fishermen. Thus, their total fish value, on average, would be $\$ 50,238$ per year, and their net return would be $\$ 15,102$ per year (instead of a $\$ 3,978$ net return per year when only accounting the commercial value of fish actually sold). Under this scenario, 64% of full-time commercial fishermen would earn positive net returns of $\$ 35,337$ per year. The average value of unsold catch was $\$ 3,648$ per year per part-time commercial fisherman, so the total fish value (sold plus kept) would be $\$ 12,237$. On average, the total fish value can cover the trip costs $(\$ 7,649)$, but not all the fixed costs $(\$ 5,579)$. Only 36% of the part-time commercial fishermen would earn a positive net return estimated at $\$ 9,584$ per year if all fish landed were sold.

Offshore handline fishermen spent more per trip on boat fuel, bait, and food and beverage than small boat commercial fishermen due to the longer trips with more people on board and using pelagic handline gear. The average trip costs for offshore handline fishing was $\$ 861$ per trip, while the average trip costs for full-time and part-time commercial fishermen was $\$ 395$ per trip and $\$ 266$ per trip, respectively. Full-time commercial fishermen spent more on boat fuel and ice per trip relative to part-time commercial fishermen. Offshore handline fishermen also showed substantially higher annual fixed costs than the other two types of fishermen, due to higher costs on all items except loan payments, which were comparable with the average paid by full-time commercial fishermen. The average fixed cost to offshore handline fishermen was $\$ 85,317$ per year per vessel, while the average fixed cost to full-time commercial fishermen was $\$ 11,220$ per year per vessel, which was twice as high as the average of $\$ 5,579$ for part-time commercial fishermen. Also, offshore handline fishermen took more trips, all used pelagic handline gear, and they fished almost exclusively in federal waters. Full-time and part-time commercial fishermen were more active in state waters. Pelagic fish were the main target for offshore handline fishermen and represented 99.9% of their total catch, while bottomfish represented only 0.005% of the total. Full-time and part-time commercial fishermen showed more variety in fish catch, with 29% and 18% of their catches from bottomfish and reef fish respectively, and the remainder from pelagic fish catch.

Offshore handline fishermen, on average, caught over 150,000 lb of fish annually, valued at $\$ 460,000$. Full-time commercial fishermen, on average, caught almost $12,000 \mathrm{lb}$ of fish annually and received almost $\$ 40,000$ from fish sales. Part-time commercial fishermen caught $3,000 \mathrm{lb}$ of fish valued at $\$ 8,600$, on average. In terms of catch disposition, offshore handline fishermen sold 74% of their catches, full-time commercial fishermen sold 73%, and part-time commercial fishermen sold 70%. The rest of the catches were mostly kept at home for consumption or given away to friends. The importance of fish sales to personal income varied greatly by fisherman type. Many fishermen who self-identified as full-time or part-time commercial fishermen had other income sources. Fish sales accounted for a quarter or less of personal income for 33% of full-time commercial fishermen and 73% of part-time commercial fishermen.

Due to the large variations in net returns among full-time and part-time small boat commercial fishermen, we conducted further analysis by different fishermen groups based on their actual economic performance (i.e., positive vs. negative net return, without including the unsold catch
values). It is obvious that full-time and part-time commercial fishermen who earned positive net returns had higher catches and value of fish sold per year and per trip compared with those who did not earn positive net returns. Catch rates for full-time commercial fishermen who earned positive net returns were about 3.5 times higher per year and per trip compared with those who did not earn positive net returns. On average, full-time commercial fishermen who earned positive net returns caught $18,151 \mathrm{lb}$ of fish per year and 262 lb per trip, and a lower portion of their catch from pelagic fish (69%). Those who did not earn positive net returns caught $5,156 \mathrm{lb}$ per year and 78 lb per trip, and a higher portion of their catch (79%) from pelagic fish. Part-time commercial fishermen who earned positive net returns caught 5,204 lb per year and 180 lb per trip, vs. those who did not earn positive net returns, with catch of $2,459 \mathrm{lb}$ per year and 103 lb per trip. The differences between the two groups (positive vs. negative net return) were two times higher catch rates per year and per trip.

Full-time commercial fishermen who earned positive net returns received $\$ 63,375$, on average, from fish sold per year and $\$ 986$ per trip, vs. those who did not earn positive net returns, with $\$ 14,852$ on average from fish sold per year and $\$ 265$ per trip. The differences were about 4 times higher sales per year and per trip for positive vs. negative net returns. Full-time commercial fishermen who earned positive net returns also derived a higher portion of sales from pelagic fish (56% vs. 50%). Although pelagic fish represented a lower portion of their catches when compared with those who did not earn positive net returns, it is possible that fishermen who earned positive net returns caught better/bigger pelagic fish (and therefore higher price per lb). Part-time commercial fishermen who earned positive net returns received $\$ 21,156$, on average, from fish sold per year and $\$ 732$ per trip vs. those who did not earn positive net returns who received $\$ 5,268$ per year and $\$ 210$ per trip. The differences between the part-time commercial fishermen with positive and negative net returns were about 4 times higher sales per year and 3.5 times higher sales per trip. Those who earned positive net returns had a higher portion of their fish sold from bottomfish sales (25% vs. 16%).

Income dependency on fish sales was also different by economic performance groups. More than half of the full-time commercial fishermen who earned positive net returns indicated that 76% to 100% of their personal income came from fish sales, whereas 48% of full-time commercial fishermen who did not earn positive net returns indicated that 1% to 25% of their personal income came from fish sales. Part-time commercial fishermen who earned positive net returns received 35% of their income from fish sales, on average, vs. those who performed negatively and received 19% of their income from fish sales.

Full-time commercial fishermen who earned positive net returns, tend to have larger, more powerful, newer, more highly valued vessels, with longer ownership. Fishing activity characteristics were similar across full-time commercial fishermen with different economic performances, but those who used bottomfish handline gear, were more active in federal waters, and had two or more fishermen on board were more likely to earn positive net returns. In addition, those who earned positive net returns tended to sell a higher portion of their catch and utilized more market outlets.

Part-time commercial fishermen with varying economic performances showed similar vessel characteristics. However, those who earned positive net returns took more boat fishing trips in the past 12 months, were more likely to use troll and pelagic handline gear, and fished alone.

Similar to the pattern for full-time commercial fishermen, part-time commercial fishermen who earned positive net returns sold a higher portion of their catch. Additionally, they tended to use more market outlets including wholesalers, auctions, restaurants, and stores more often than those who did not earn positive net returns.

All the offshore handline fishermen who responded to the survey (3 out of 11 fishermen) earned positive net returns. Two important things to keep in mind are (1) the population size of the offshore handline fishermen is very small, and the response of survey is voluntary and (2) there are great variations in catches and revenue among the offshore handline fishermen. Therefore, it is important to interpret results for offshore handline fishermen with caution because of potential sampling bias. Although the survey response values may be subject to large variations, as demonstrated in the comparison of the catch and revenue data between population and sample, the sample data nevertheless provide some directional comparison of the socioeconomic profiles between the offshore handline and other small boat commercial (full-time and part-time) fishermen in Hawaii.

This study provides a first time examination of the economic performance of the offshore handline fishery and the Hawaii small boat commercial fishery in terms of annual operations, taking into account the annual trip costs and fixed costs. It is evident that fishermen have their distinct fishing characteristics, motivations, spending and harvest patterns, market participation, and ensuing variations in economic performance. This study provides important information on the economic and social characteristics of the offshore handline fishery and the Hawaii small boat commercial fishery. Having the best scientific information available will allow fishery managers to make timely and better-informed decisions affecting these fisheries, their many different participants, and the communities that depend on them.

Table of Contents

Executive Summary iii
Table of Contents vii
List of Tables viii
List of Figures x
Introduction 1
Materials and Methods 4
Population 4
Response Rates 4
Methodology 5
Results 7
Economic Performance Analysis without Inclusion of Unsold Fish Value 7
Economic Performance Analysis with Inclusion of Unsold Fish Value 13
Characteristics by Fisherman Type 16
Fish Landings 19
Market Participation 22
Value of Fish Sold 22
Characteristics by Annual Net Return 24
Conclusion and Discussion 32
Acknowledgements 34
Literature Cited 35
Appendices 36
Appendix A. Survey Questionnaire 36

List of Tables

Table 1. Respondents for economic performance analysis 5
Table 2. Annual average trip costs, fixed costs, value of fish sold, net revenue, and net return by fisherman type (mean, standard error, and median) 9
Table 3. Annual average trip costs, fixed costs, value of fish sold, net revenue, and net return by negative and positive annual net revenue and annual net return for full-time commercial fishermen (mean, standard error, and median) 10
Table 4. Annual average trip costs, fixed costs, value of fish sold, net revenue, and net return by negative and positive annual net revenue and annual net return for part-time commercial fishermen (mean, standard error, and median) 11
Table 5. Fishing trip costs by fisherman type (mean, standard error, median, and percentage of total trip cost) 12
Table 6. Annual fishing fixed costs in 2013 by fisherman type (mean, standard error, median, and percentage of fleet with expenditure) 13
Table 7. Estimated values of unsold catch, fish landed, net revenue, and net return, by fisherman type (mean, standard error, and median) 15
Table 8. Estimated values of unsold catch, fish landed, net revenue, and net return by negative and positive estimated annual net return for full-time commercial and part-time commercial fishermen (mean, standard error, and median) 16
Table 9. Fishermen demographics by fisherman type (percentage of responses) 17
Table 10. Vessel characteristics by fisherman type (mean, standard error, median, and percentage of responses) 18
Table 11. Fishing activity characteristics by fisherman type (percentage of responses and mean) 19
Table 12. Total landings for offshore handline fishermen in survey population from State of Hawaii DAR's Fishermen Reporting System vs. survey respondents 20
Table 13. Landings by total weight and species group under each fisherman type (percentage of responses, mean, and median) 21
Table 14. Catch disposition by fisherman type (percentage of responses) 22
Table 15. Market participation by fisherman type (percentage of responses) 22
Table 16. Revenue from fish sold for offshore handline fishermen in survey population from State of Hawaii DAR's Dealer Reporting System vs. survey respondents 23
Table 17. Value of fish sold by fisherman type (percentage of responses, mean, and median). 24
Table 18. Fishermen demographics for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net return (percentage of responses) 25
Table 19. Vessel characteristics for full-time commercial fishermen and part-time commercial fishermen by negative and positive annual net returns (mean, standard error, median) 26
Table 20. Fishing activity characteristics for full-time commercial fishermen and part-time commercial fishermen by negative and positive annual net returns (percentage of responses and mean) 27
Table 21. Landings by total weight and species group for full-time commercial fishermen and part-time commercial fishermen, and by negative and positive annual net return (percentage of responses, mean, and median) 28

Table 22. Catch disposition for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net return (percentage of catch)
Table 23. Catch disposition for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net return (percentage of catch)29

Table 24. Value of fish sold for full-time commercial fishermen and part-time commercial
fishermen, by negative and positive annual net returns (percentage of responses,
mean, and median) 31

List of Figures

Figure 1. Pelagic landings for the small-scale commercial fisheries in Hawaii: 1992-2015.......... 2
Figure 2. Pelagic landings by the Hawaii-based commercial fleet: 2015....................................... 3
Figure 3. Proportion of annual trip costs, fixed costs, and net returns relative to annual value of
fish sold, by fisherman type.. 8
Figure 4. Proportion of annual trip costs, fixed costs, and estimated net return to the estimated annual value if all fish were sold, by fisherman type.

Introduction

This study examines the economic performance of the offshore handline fishery and the Hawaii small boat commercial fishery in terms of annual net revenues and annual net returns. The offshore handline fishery includes a small group of large vessels that used a variety of gear, including pelagic handline, troll, and other specialized gear, to target juvenile bigeye and yellowfin tuna at offshore seamounts and weather buoys (Itano 1999). Three segments of fishermen are included in this analysis, including offshore handline fishermen, and those who self-identified in the 2014 Hawaii Small Boat Economic Survey as full-time commercial fishermen or part-time commercial fishermen. Although not all of the offshore handline fishermen are full-time, hereafter the full-time and part-time commercial fishermen discussed in this report only refer to the small boat fishermen. We did not perform an economic analysis for fishermen whose self-identified motivations were not commercial, including recreational expense, purely recreational, subsistence, and cultural, because their main purpose for fishing was not for commercial sales. Instead, large portions of their catches were for home consumption or given away (Chan and Pan 2017). Economic data used in this study were collected from the 2014 Hawaii Small Boat Economic Survey, and the summaries were documented in a 2017 NOAA Technical Memorandum (Chan and Pan 2017). However, the data summaries in Chan and Pan (2017) did not include the offshore handline fishery because of its unique characteristics that differ from the typical Hawaii small boat fishery. Offshore handline fishermen's fishing vessels are larger (~ 45 feet vs. ~ 23 feet) and better equipped because of the long travel distances to fishing grounds (150-250 miles vs. more active within state waters), multi-day trip lengths (4.9 days vs. single day), multiple crew members ($2-5$ people vs. 2 people), and large catches per trip of 2,000 to 8,000 pounds for a five-day trip relative to 80 pounds per trip for the small boats (Itano 1999; Chan and Pan 2017).

The Cross Seamount near the Big Island is the main fishing ground of the offshore handline fishery, which was developed in the early 1970s. The participation peaked in the 1990s but relatively few fishermen now fish in that area regularly (Glazier et al. 2001). The changes in offshore handline fishing are reflected in the pelagic landing trends by the offshore handline fishery. To illustrate the relative scale of the fisheries discussed in the study, Figure 1 shows the commercial pelagic landings by the small-scale fisheries including main Hawaiian Islands troll, the main Hawaiian Islands handline, and the offshore handline fisheries from 1987 to 2015. The main Hawaiian Islands troll and the main Hawaiian Islands handline fisheries represented both full-time and part-time small boat fishermen included in the study. Reported landings by the offshore handline fishery peaked in the 1990s and early 2000s, with average landings of close to one million pounds per year between 1992 and 2002, but started to decrease in 2003. The average landings between 2003 and 2015 were about 0.5 million pounds.

Figure 1. Pelagic landings for the small-scale commercial fisheries in Hawaii: 1987-2015
Source: Pacific Island Fisheries Science Center (2017).
Figure 2 illustrates the scale of the three fisheries discussed in this study relative to the total pelagic landings by all Hawaii-based commercial fleets in 2015. Although the three fisheries represented 12% of the total commercial pelagic landings in Hawaii in 2015, their contributions of the non-commercial aspects of fishing, such as providing food to extended families and communities, and serving as "a means for enacting a locally valued way of life," are very important (Glazier et al. 2001). The distributions of the catch allocated for family consumption and to give away to friends and family are presented in Table 14. Chan and Pan (2017) also discussed the details of the non-commercial aspect of the small boat fisheries. As previous research pointed out, the full value of the three fisheries should be expressed as a "composite of economic, dietary, and cultural dimensions" (Glazier et al. 2001).

Figure 2. Pelagic landings by the Hawaii-based commercial fleet: 2015
Source: Pacific Island Fisheries Science Center (2017).
Excluding charter, aquarium, and precious coral fisheries (State of Hawaii 2013), there were 1,843 small boat-based commercial marine license holders in 2013. Collectively, they produced 6.2 million pounds of fish in 2013, valued at $\$ 16$ million. Most of the small boat CML holders are owners and operators (Chan and Pan 2017). Commercial fishermen constitute a large portion of fishermen in the Hawaii small boat fleet. According to Chan and Pan (2017), 7\% of respondents self-identified as full-time commercial fishermen, and 51% of them self-identified as part-time commercial fishermen. Together, these two groups represented 81% of the total catch of pelagic fish, bottomfish, and reef fish, while generating 90% of the total value of fish sold. Despite the economic importance of the commercial fishermen within the Hawaii small boatbased fishery, no study has examined their economic performance on an annual basis. Previous studies related to the Hawaii small boat fishery reported costs and revenues separately (Hamilton and Huffman 1997; Hospital, Bruce, and Pan 2011; and Hospital and Beavers 2012), but no attempt was made to compare the costs relative to revenues on an annual basis.

This study establishes baseline economic performance information for both the offshore handline fishery and the Hawaii small boat commercial fleet. Since 60% of the full-time commercial fishermen and almost all (97\%) of the part-time fishermen indicated that 75% or less of their personal income is from fish sales, this study not only sheds some light on the economic contribution of the fisheries, but also the cultural value of small boat fishing to the community.

Materials and Methods

Population

The 2014 Hawaii Small Boat Economic Survey was comprised of 1,796 fishermen who held a State of Hawaii Commercial Marine License (CML) and met the following criteria characterizing the small boat fishery: fishermen who caught, landed, and sold at least one fish using small vessels during 2013 and had a valid mailing address, but did not participate in the charter, longline, aquarium, and precious coral fisheries. The detailed description of the survey (including the survey population and methodology) is given in Chan and Pan (2017). In this study, we used data from surveys of three types of fishermen: offshore handline, full-time commercial, and part-time commercial. Full-time and part-time commercial fishermen were selfidentified in the survey; therefore, we do not know the population breakdown of these two types of fishermen. However, we can identify the offshore handline fishing population by fishing location and gear usage reported to the State of Hawaii Division of Aquatic Resources (HDAR) from July 2013 to June 2014 that matches the 12-month recall in our surveys (first sent out in early July 2014). If a fisherman fished at seamount during July 2013 to June 2014, and used gear associated with the offshore handline fishery, including tuna handline, troll, ika shibi, and palu ahi, they are classified as offshore handline fishermen. During the period of July 2013 to June 2014, there were 11 offshore handline fishermen among the 1,796 in the survey population. Note that among all 11 offshore handline fishermen, 4 of them are from Oahu, 6 are from Big Island, and 1 is from Kauai. They all fished in both seamount and non-seamount areas during July 2013 to June 2014; 25% of their trips were in seamount only, 51% of their trips were mixed seamount and non-seamount trips, and 24% of their trips were non-seamount. A large portion (76\%) of catch came from the seamount area, where the majority of the trips occurred.

Response Rates

The response to the 2014 Hawaii Small Boat Economic Survey was voluntary; 824 surveys were completed statewide for an overall response rate of 47%. Among the 11 offshore handline fishermen that received the survey, 3 of them responded by mail, yielding a 27% response rate for this segment. Because we do not have the breakdown which differentiates full-time and parttime commercial fishermen, we cannot calculate the specific response rate for those two types of fishermen. A copy of the survey questionnaire is shown in Appendix A. The metadata for this report can be found at: https://inport.nmfs.noaa.gov/inport/item/29820.

For evaluation of the economic performance of offshore handline and commercial fishermen, we included surveys with valid answers for costs and revenue in the 2014 Hawaii Small Boat Economic Survey. Table 1 shows the total number of respondents to the survey and the number of respondents included in this report analysis, by fisherman type. Survey responses are separated by three fisherman types; offshore handline, full-time commercial, and part-time commercial fishermen.

Table 1. Respondents for economic performance analysis

	Survey respondents in 2014 Hawaii Small Boat Economic Survey	Survey respondents in this study
Offshore handline	3	3
Full-time commercial	57	44
Part-time commercial	407	311

Methodology

The economic performance of the fishing operations is evaluated in terms of both net revenues and net returns, on an annual basis. They are defined as:

Annual net revenue $=$ Annual value of fish sold - annual trip costs.
Annual net return $=$ Annual value of fish sold - annual trip costs - annual fixed costs.
The survey did not inquire about labor cost since small boat fishing is mostly owner operated and, on average, only two people are on board: the operator and one crew member who is usually a friend or family member of the operator. These two people often share the net revenue or net return. The 2014 Hawaii Small Boat Economic Survey only collected trip costs for the two most common gear type trips a fisherman used in a year. If a fisherman used more than two gear types in a year, we do not have the trip cost information for more than the two types of gear he used most. To calculate the annual trip costs for respondents that used more than two gear types, we replaced the lacking trip costs with the average trip costs for that gear type. For example, if a spear fishing trip is the third most common trip type for a full-time commercial fisherman, we used the average spear fishing trip costs for all full-time commercial fishermen in the calculation of this fisherman's annual trip costs, in addition to the trip costs this fisherman reported in the survey for the first and second most common trip types. The formula for annual trip costs is:

$$
\begin{aligned}
\text { Annual trip costs }= & \text { (number of trolling trips } \times \text { trolling trip cost })+ \\
& \text { (number of pelagic handline trips } \times \text { pelagic handline trip cost })+ \\
& \text { (number of bottomfish handline trips } \times \text { bottomfish handline trip cost) }+ \\
& \text { (number of spearfishing trips } \times \text { spearfishing trip cost) }+ \\
& \text { (number of netting trips } \times \text { netting trip cost). }
\end{aligned}
$$

Please note that the number of trips by gear type is estimated from two survey questions. It is derived based on the total number of boat fishing trips and the percent of each gear type used in the past 12 months. The survey question asked for fishermen's total number of trips in the past 12 months in six response bins. The range of the upper and lower bound of each bin is quite broad. Therefore, we compared the number of trips generated using medians of survey response bins with the number of trips reported to the HDAR for the same time period (between July 1, 2013 and June 30, 2014). We find that the number of trips generated using medians of survey response bins were generally higher than the number of trips reported to HDAR. To avoid overestimating the number of trips and the associated annual fishing costs, we adjusted the estimated number of trips based on a set of rules using the number of trips reported to HDAR as reference. Specifically, when the reported number of trips to HDAR was lower than the lower bound of the survey response bin, we used the lower bound of that response bin as the estimation of the number of trips for the fisherman. When the reported number of trips to HDAR was higher
than the upper bound of the response rate, we used the upper bound of that response bin as the estimation of the number of trips for the fisherman. If the reported number of trips to HDAR was within the response bin, we used the HDAR number as the estimation of the number of trips for the fisherman. Using this set of rules, the average estimated number of trips falls between the high estimates when using the survey response bins and the low number of trips reported to HDAR. The average number of trips reported to HDAR was 49 for full-time commercial fishermen vs. 93 trips if using the median of survey response bin, and 72 trips when using this set of rules. For part-time commercial fishermen, the average number of trips reported to HDAR was 21 vs. 42 trips if using the median of survey response bin, and 32 trips when using this set of rules. We find the estimated annual number of trips using this set of rules that incorporated both survey responses and HDAR records produced reasonable estimations of annual trip costs and annual net return, and because the average CPUE per trip was in reasonable ranges, we adopted this method to estimate the number of trips in this report.

To estimate the value of the unsold catch that was retained for home consumption or given away, we used the annual value of fish sold, the percent of the catch that was sold, and the percent of the catch that was consumed at home or given away. The estimated value of unsold catch was calculated as follows:

Estimated value of unsold catch $=$ Annual value of fish sold \div percent of catch that was sold \times percent of catch that was consumed at home or given away.

Note that this assumes the quality of the fish that was retained for home consumption or given away was the same quality as the catch that was sold, and the market price was not affected by an increased supply of fish in the market (as the small boats only harvested about 10% of the total pelagic landings in the Hawaii). Therefore, the market prices for the sold and unsold fish are the same. This calculation also assumes the species composition of sold and unsold catch are the same so that their price and value are proportional to the catch.

The estimated value of fish landed includes the actual commercial value of fish sold and the estimated value of the unsold catch:

Estimated value of fish landed = Annual value of fish sold + estimated value of unsold catch.
We also derived the "estimated" annual net revenue and "estimated" annual net return by incorporating the "estimated" value of the unsold catch:

Estimated annual net revenue $=$ Estimated value of fish landed - annual trip costs.
Estimated annual net return = Estimated value of fish landed - annual trip costs annual fixed costs.

Value of fish sold and trip costs are in 2013 and 2014 dollars as our first surveys were sent out in early July 2014, and the survey asked for the fish sales and fishing trip costs in the past 12 months to avoid recall bias. However, fixed costs are in 2013 dollar values since fixed costs, such as loan payments, are usually recorded in calendar year for accounting and tax purposes.

Results

In this report, survey responses are separated by three fisherman types; offshore handline, fulltime commercial, and part-time commercial. Results with less than three respondents are not displayed due to confidentiality concerns. We also divided fishermen by their economic performance, i.e., those who earned positive net returns vs. those who earned negative net returns. In addition, we compared the survey responses with HDAR's fishing reports and dealer reports to analyze the representativeness of the survey responses for landings and sale values, respectively.

Economic Performance Analysis without Inclusion of Unsold Fish Value

This section provides the economic performance analysis for offshore handline, full-time, and part-time commercial fishermen. According to Chan and Pan (2017), full-time and part-time commercial fishermen sold 73% and 68% of their catch, respectively, with most of the balance distributed between home consumption or given away to friends and family. In this section, we compare the fishermen's annual value of fish sold with their annual trip costs and annual fixed costs, and evaluate the overall annual economic performance by each fisherman type. Figure 3 shows that for offshore handline fishermen, 29% of the revenue from fish sold covered their trip costs, 19% of the revenue covered fixed costs, resulting in 52% of the value of fish sold being retained as a positive net return. For full-time commercial fishermen, the value of fish sold covered all trip costs and fixed costs, with 61% of the annual value of fish sold paying for trip costs and 29% paying for fixed costs, resulting in a 10% net return. For part-time commercial fishermen, the value of fish sold covered their trip costs but not fixed costs. Annual trip costs and fixed costs amounted to 89% and 65% of their value of fish sold, respectively. On average, parttime commercial fishermen experienced a -54% net return on the value of their fish sold.

Figure 3. Proportion of annual trip costs, fixed costs, and net returns relative to annual value of fish sold, by fisherman type

Table 2 shows the annual average trip costs, fixed costs, value of fish sold, net revenue, and net return, along with their respective standard errors and median values. On average, offshore handline fishermen received $\$ 460,000$ per year from selling their catch and earned approximately $\$ 326,000$ net revenue and $\$ 241,000$ net return per year. Full-time commercial fishermen received $\$ 39,114$ from fish sales and earned net revenue of $\$ 15,198$ annually, and after subtracting their fixed costs, they experienced a net return of $\$ 3,978$ per year. Part-time commercial fishermen received $\$ 8,588$ annually from fish sales which covered trip costs but not fixed costs, and their net loss averaged $\$ 4,639$ per year. Note that almost all medians in Table 2 are lower than the means, which indicates that some high values skew the means, especially for offshore handline fishermen, due to the small sample size.

Table 2. Annual average trip costs, fixed costs, value of fish sold, net revenue, and net return by fisherman type (mean, standard error, and median)

	Number of respondents (n)	Offshore handline	Full-time commercial	Part-time commercial
	3	44	311	
Annual trip costs	Mean	$\mathbf{1 3 4 , 1 6 5}$	$\mathbf{2 3 , 9 1 5}$	$\mathbf{7 , 6 4 9}$
	Standard error	115,375	3,290	431
Annual fixed costs	Median	34,200	17,620	5,400
	Mean	$\mathbf{8 5 , 3 1 7}$	$\mathbf{1 1 , 2 2 0}$	$\mathbf{5 , 5 7 9}$
	Standard error	68,828	1,594	363
Annual value of fish sold	Median	21,568	6,905	3,375
	Mean	$\mathbf{4 6 0 , 0 0 0}$	$\mathbf{3 9 , 1 1 4}$	$\mathbf{8 , 5 8 8}$
	Standard error	370,045	5,982	705
Annual net revenue	Median	100,000	35,000	3,500
	Mean	$\mathbf{3 2 5 , 8 3 5}$	$\mathbf{1 5 , 1 9 8}$	$\mathbf{9 4 0}$
	Standard error	254,971	4,633	525
Annual net return	75,962	7,432	(540)	
	Median	$\mathbf{2 4 0 , 5 1 8}$	$\mathbf{3 , 9 7 8}$	$\mathbf{(4 , 6 3 9)}$
	Mean	186,279	4,517	556
	Standard error	64,430	(18)	$(3,812)$

Table 3 divides the full-time commercial fishermen by their economic performance: those with negative annual net revenues vs. those with positive annual net revenues, and those with negative annual net returns vs. those with positive annual net returns. We do not show the offshore handline fishermen by economic performance due to the small sample size, plus all offshore handline fishermen had positive net returns. Table 3 shows that 66% of full-time commercial fishermen's trip costs were covered by the fish they sold commercially, and they also received positive net revenues, whereas 34% of them did not have their trip costs covered. Between these two groups, their average trip costs and fixed costs were similar, but the value of fish sold for those with positive net revenues was 5 times higher than those with negative net revenues. After taking into account the fixed costs, 50% of full-time commercial fishermen could cover both trip costs and fixed costs and received an average $\$ 25,675$ net return. The average net loss for those who did not receive positive net returns was $\$ 17,720$. The differences between the two groups were their value of fish sold and trip costs. Although the average trip costs for fishermen with positive net returns was 20% higher than those with negative net returns, their value of fish sold was 4 times higher than those with negative net returns.

Table 3. Annual average trip costs, fixed costs, value of fish sold, net revenue, and net return by negative and positive annual net revenue and annual net return for full-time commercial fishermen (mean, standard error, and median)

		Annual net revenue		Annual net return	
		Negative	Positive	Negative	Positive
	Number of respondents (n)	15	29	22	22
Annual trip costs	Mean	$\mathbf{2 3 , 5 4 8}$	$\mathbf{2 4 , 1 0 6}$	$\mathbf{2 1 , 5 4 1}$	$\mathbf{2 6 , 2 9 0}$
	Standard error	6,593	3,738	4,910	4,437
	Median	17,820	17,540	14,767	21,319
Annual fixed costs	Mean	$\mathbf{1 1 , 2 9 5}$	$\mathbf{1 1 , 1 8 2}$	$\mathbf{1 1 , 0 3 1}$	$\mathbf{1 1 , 4 0 9}$
	Standard error	3,031	1,883	2,394	2,161
	Median	6,126	7,200	6,213	10,530
Annual value of fish sold	Mean	$\mathbf{1 0 , 5 5 0}$	$\mathbf{5 3 , 8 8 8}$	$\mathbf{1 4 , 8 5 2}$	$\mathbf{6 3 , 3 7 5}$
	Standard error	3,665	7,552	4,059	8,602
	Median	3,500	35,000	5,500	44,000
Annual net revenue	Mean	$\mathbf{(1 2 , 9 9 8}$	$\mathbf{2 9 , 7 8 2}$	$\mathbf{(6 , 6 8 8})$	$\mathbf{3 7 , 0 8 4}$
	3,703	4,918	3,443	5,517	
	Standard error	$(8,374)$	25,685	$(2,653)$	28,142
Mnnual net return	$\mathbf{M e d i a n}$	5,652	$\mathbf{1 8 , 6 0 0}$	$(\mathbf{1 7 , 7 2 0}$	$\mathbf{2 5 , 6 7 5}$
	Mean	4,110	4,377	4,425	
	Standard error	$(12,584)$	16,909	$(9,890)$	19,839

Table 4 shows the same information as Table 3 for part-time commercial fishermen. Table 4 shows that 41% of part-time commercial fishermen had their trip costs covered and received positive net revenues, whereas 59% of them did not have their trip costs covered. Between these two groups, their average trip costs were similar, but those with positive net revenues had fixed costs that were 34% higher and their value of fish sold was about 4 times higher than those with negative net revenues. After taking into account both trip costs and fixed costs, only 21% of parttime commercial fishermen had positive net returns, and the average amount was $\$ 7,628$. For the other 79% of part-time commercial fishermen who did not receive positive net returns, their average net loss was $\$ 7,880$. The costs and revenues between these two groups were different. For those with positive net returns, their average trip costs were 22% higher, but their average fixed costs were 21% lower, and their value of fish sold was 4 times higher, when compared with those with negative net returns.

Table 4. Annual average trip costs, fixed costs, value of fish sold, net revenue, and net return by negative and positive annual net revenue and annual net return for part-time commercial fishermen (mean, standard error, and median)

		Annual net revenue		Annual net return	
		Negative	Positive	Negative	Positive
	Number of respondents (n)	182	129	246	65
Annual trip costs	Mean	$\mathbf{7 , 5 1 7}$	$\mathbf{7 , 8 3 4}$	$\mathbf{7 , 3 1 3}$	$\mathbf{8 , 9 2 1}$
	Standard error	560	679	481	964
	Median	5,346	5,572	5,216	6,710
Annual fixed costs	Mean	$\mathbf{4 , 8 9 4}$	$\mathbf{6 , 5 4 5}$	$\mathbf{5 , 8 3 6}$	$\mathbf{4 , 6 0 7}$
	Standard error	379	685	400	843
	Median	3,088	4,065	3,600	3,010
Annual value of fish sold	Mean	$\mathbf{3 , 5 6 8}$	$\mathbf{1 5 , 6 7 1}$	$\mathbf{5 , 2 6 8}$	$\mathbf{2 1 , 1 5 6}$
	Standard error	428	1,366	500	2,186
	Median	1,500	7,500	3,500	15,000
Annual net revenue	Mean	$\mathbf{3 , 9 4 9}$	$\mathbf{7 , 8 3 7}$	$\mathbf{(2 , 0 4 5)}$	$\mathbf{1 2 , 2 3 5}$
	Standard error	310	885	342	1,474
	Median	$(2,697)$	4,267	$(1,499)$	7,563
Annual net return	Mean	$\mathbf{8 , 8 4 3}$	$\mathbf{1 , 2 9 2}$	$\mathbf{(7 , 8 8 0}$	$\mathbf{7 , 6 2 8}$
	Standard error	535	875	468	1,010
	Median	$(7,377)$	87	$(5,793)$	4,024

Table 5 shows fishing trip costs by fisherman type. The offshore handline fishermen showed the highest average trip costs (\$861) due to the high costs of boat fuel, bait, and food and beverage. They generally took longer trips and had more people on board relative to full-time and part-time commercial fishermen. The use of pelagic handline gear requires more bait than other gear types. The average trip costs for full-time commercial and part-time commercial fishermen were $\$ 395$ and $\$ 266$, respectively. Compared with part-time commercial fishermen, full-time commercial fishermen tended to spend more on boat fuel and ice. The median cost of oil for full-time and part-time commercial fishermen was low when compared with the median cost of oil for offshore handline fishermen. Small boat fishing trips were not generally multi-day trips, and as a result, many of the small boat trips did not require oil use.

Table 5. Fishing trip costs by fisherman type (mean, standard error, median, and percentage of total trip cost)

Variable cost		Offshore handline		Full-time commercial		Part-time commercial	
		\$ per trip	\% of total trip cost	\$ per trip	\% of total trip cost	\$ per trip	\% of total trip cost
	Number of respondents (n)	3		36		259	
Boat fuel	Mean	351.67	40.8	195.90	49.6	128.38	48.2
	Standard error	42.85		22.44		3.97	
	Median	400.00		150.00		100.00	
Truck fuel	Mean	33.33	3.9	30.27	7.7	24.33	9.1
	Standard error	6.97		3.78		0.97	
	Median	25.00		20.00		20.00	
Oil	Mean	27.17	3.2	14.37	3.6	6.97	2.6
	Standard error	11.39		4.33		0.57	
	Median	35.83		1.00		0.50	
Ice	Mean	82.87	9.6	58.83	14.9	32.91	12.3
	Standard error	10.87		5.89		1.27	
	Median	100.00		50.00		30.00	
Bait	Mean	119.30	13.9	38.76	9.8	26.57	10.0
	Standard error	29.54		5.07		1.78	
	Median	150.00		21.00		20.00	
Food and beverage	Mean	125.00	14.5	26.39	6.7	24.48	9.2
	Standard error	20.92		2.71		1.04	
	Median	150.00		20.00		20.00	
Daily maintenance \& repair	Mean	35.00	4.1	29.03	7.4	21.99	8.3
	Standard error	9.19		5.05		1.68	
	Median	50.00		10.00		10.00	
Other trip cost	Mean	86.67	10.1	1.11	0.3	0.85	0.3
	Standard error	59.25		0.75		0.33	
	Median	0.00		0.00		0.00	
Total trip cost	Mean	861.00		394.66		266.48	
	Standard error	116.65		38.10		7.85	
	Median	950.00		304.50		235.00	

Table 6 shows the annual fixed costs in 2013 by fisherman type. On average, fixed costs for offshore handline fishing totaled $\$ 85,317$, while the average fixed costs of full-time and parttime commercial fishermen were $\$ 11,220$ and $\$ 5,579$, respectively. Offshore handline fishermen indicated substantially higher annual fixed costs than the other two types of fishermen on all items except loan payments, which were comparable to those of full-time commercial fishermen. Fixed costs paid by full-time commercial fishermen were generally twice as high as the amounts paid by part-time commercial fishermen, mainly due to higher costs for gear replacement and repair, boat and trailer repair, maintenance and improvements, and loan payments.

Table 6. Annual fishing fixed costs in 2013 by fisherman type (mean, standard error, median, and percentage of fleet with expenditure)

Fixed cost		$\begin{gathered} \hline \% \text { of fleet } \\ \text { with } \\ \text { expenditure } \\ \hline \end{gathered}$	Offshore handline	$\begin{gathered} \hline \% \text { of fleet } \\ \text { with } \\ \text { expenditure } \\ \hline \end{gathered}$	Full-time commercial	\% of fleet with expenditur	Part-time commercial
	Number of respondents (n)		3		44		311
Gear replacement/ Repair	Mean	5.4	4,583	34.9	3,914	31.6	1,763
	Standard error		2,917		761		143
	Median		3,750		2,050		1,000
Boat and trailer repair/ maintenance/improvements	Mean	69.0	58,833	30.4	3,413	26.3	1,468
	Standard error		58,085		777		123
	Median		1,500		1,600		800
Loan payments	Mean	2.3	2,000	18.6	2,090	18.7	1,041
	Standard error		2,000		858		185
	Median		0		0		0
Boat insurance	Mean	8.5	7,267	4.6	518	8.6	482
	Standard error		3,060		140		60
	Median		7,200		0		0
Mooring fees	Mean	4.3	3,640	5.3	600	6.8	379
	Standard error		1,428		220		77
	Median		3,852		0		0
Fees	Mean	6.4	5,493	5.3	593	6.9	385
	Standard error		4,756		94		24
	Median		1,000		500		250
Financial services	Mean	3.9	3,333	0.8	91	0.7	39
	Standard error		3,333		51		12
	Median		0		0		0
Other	Mean	0.2	167	0.0	0	0.4	23
	Standard error		167		0		11
	Median		0		0		0
Annual fixed costs	Mean		85,317		11,220		5,579
	Standard error		68,828		1,594		363
	Median		21,568		6,905		3,375

Economic Performance Analysis with Inclusion of Unsold Fish Value

We explored the effect of including the estimated value of the unsold fish catch on economic performance by assuming that all kept catch (excluding portions caught and released) retained for home consumption or given away was, instead, sold. Inclusion of the estimated value of unsold retained catch changes the economic performance of fishermen dramatically. Figure 4 shows the proportion of annual trip costs, fixed costs, and the new estimated net return relative to the estimated annual value of fish landed by the three fisherman types. If all of the kept catches were sold, the offshore handline fishermen could realize 60% of their estimated value of fish landed as a net return, while the full-time commercial fishermen could retain 30% of their estimated value of fish landed as a net return. Even in this scenario, however, the part-time commercial fishermen would remain unable to cover their total fixed costs. On average, their new estimated net loss equals 8% of the estimated value of all the fish landed.

Figure 4. Proportion of annual trip costs, fixed costs, and estimated net return to the estimated annual value if all fish were sold, by fisherman type

Under the assumptions that all the kept catches were sold, had the same quality and species composition as sold catch, and no effect on market price, both the offshore handline and fulltime commercial fishermen would earn positive annual net returns, on average. Full-time commercial fishermen would receive $\$ 50,238$ per year from all the fish they landed, including $\$ 11,124$ per year from sale of the catch they would normally retain for home consumption and to give away, thus realizing $\$ 15,102$ in net return per year. For the part-time commercial fishermen, the average value of their retained catch would be $\$ 3,648$ per year, in addition to the $\$ 8,589$ per year they actually received from the catch they sold. However, that combined amount would only cover trip costs and part of their fixed costs, still leaving a net loss of $\$ 991$ per year. Table 7 shows the estimated value of unsold catch, estimated value of fish landed, estimated net revenue, and estimated net return annually, and the respective standard error and median.

Table 7. Estimated values of unsold catch, fish landed, net revenue, and net return, by fisherman type (mean, standard error, and median)

	Number of respondents (n)	Offshore handline	Full-time commercial	Part-time commercial
	Mean	4	311	
Estimated value of unsold	Standard error	$\mathbf{8 9 , 6 0 1}$	$\mathbf{1 1 , 1 2 4}$	$\mathbf{3 , 6 4 8}$
catch	Median	42,748	2,000	282
	100,000	8,097	1,974	
Estimated value of fish landed	Mean	$\mathbf{5 4 9 , 6 0 1}$	$\mathbf{5 0 , 2 3 8}$	$\mathbf{1 2 , 2 3 7}$
	Standard error	405,372	7,727	872
Estimated net revenue	Median	200,000	42,147	5,706
	Mean	$\mathbf{4 1 5 , 4 3 6}$	$\mathbf{2 6 , 3 2 2}$	$\mathbf{4 , 5 8 8}$
	Standard error	289,997	6,169	667
Estimated net return	Median	165,800	15,077	1,275
	Mean	$\mathbf{3 3 0 , 1 2 0}$	$\mathbf{1 5 , 1 0 2}$	$\mathbf{(9 9 1)}$
	Standard error	221,230	5,873	651
	Median	144,232	7,822	$(1,789)$

Table 8 shows descriptive statistics for the estimated value of unsold catch, estimated value of fish landed, estimated net revenue, and estimated net return for full-time and part-time commercial fishermen who earned both positive and negative estimated net returns. Assuming all catches for home consumption or given away were sold, 64% of full-time commercial fishermen would be able to cover trip costs and fixed costs and earn positive net returns. On average, they would receive a total of $\$ 70,964$ per year from selling all of their fish, including $\$ 15,562$ fish value per year from the portion normally kept for home consumption or given away, and thereby earn $\$ 35,337$ estimated net return per year. For the 36% of full-time commercial fishermen who did not earn positive net returns, even assuming all their kept catches were sold for an average of $\$ 3,358$ per year, they would still have $\$ 20,308$ net loss, on average.

Under the assumption that part-time commercial fishermen sold all of their kept catches, 36\% would be able to cover both trip costs and fixed costs and thereby earn positive net returns. They would receive a total of $\$ 22,955$ per year, on average, including $\$ 6,394$ from selling the portion kept for home consumption or given away. On average, this group would earn \$9,584 estimated net return per year. For the 64% of part-time commercial fishermen who did not earn positive net returns, even assuming that all their kept catches could be sold for an average of $\$ 2,081$ per year, their estimated average annual loss would be $\$ 7,026$.

Table 8. Estimated values of unsold catch, fish landed, net revenue, and net return by negative and positive estimated annual net return for full-time commercial and part-time commercial fishermen (mean, standard error, and median)

		Full-time commercial		Part-time commercial	
		Negative estimated annual net return	Positive estimated annual net return	Negative estimated annual net return	Positive estimated annual net return
	Number of respondents (n)	16	28	198	113
Estimated value of unsold	Mean	$\mathbf{3 , 3 5 8}$	$\mathbf{1 5 , 5 6 2}$	$\mathbf{2 , 0 8 1}$	$\mathbf{6 , 3 9 4}$
catch	Standard error	1,094	2,761	195	619
	Median	1,361	9,563	1,274	4,099
Estimated value of fish	Mean	$\mathbf{1 3 , 9 6 7}$	$\mathbf{7 0 , 9 6 4}$	$\mathbf{6 , 1 2 0}$	$\mathbf{2 2 , 9 5 5}$
landed	4,412	9,975	589	1,765	
	Standard error	6,603	48,782	3,500	17,045
Estimated net revenue	Median	$\mathbf{(8 , 3 7 4)}$	$\mathbf{4 6 , 1 4 9}$	$\mathbf{(1 , 0 1 3)}$	$\mathbf{1 4 , 4 0 1}$
	Mean	2,831	7,256	375	1,267
	Standard error	$(3,177)$	37,164	(486)	8,666
Median	$\mathbf{(2 0 , 3 0 8)}$	$\mathbf{3 5 , 3 3 7}$	$\mathbf{(7 , 0 2 6)}$	$\mathbf{9 , 5 8 4}$	
	4,591	6,158	488	964	
	Mean	$(11,840)$	27,781	$(4,707)$	5,181

Characteristics by Fisherman Type

This section presents the characteristics of offshore handline, full-time commercial, and parttime commercial fishermen, including demographics, vessel characteristics, fishing activity, landings, catch disposition, market participation, and the value of fish sold.

Table 9 shows the demographics of the three fisherman types. Offshore handline fishermen tended to be younger, with relatively higher household incomes than full- and part-time commercial fishermen. Relative to full-time fishermen, the part-time commercial fishermen were more likely to be Asian and white, had higher household incomes, more education, and tended to be younger.

Table 9. Fishermen demographics by fisherman type (percentage of responses)

Percentage of responses		Offshore handline	Full-time commercial	Part-time commercial
	Number of respondents (n)	3	44	311
Island	Oahu	0.0	27.3	32.2
	Hawaii	66.7	38.6	39.9
	Maui	0.0	15.9	16.1
	Kauai	33.3	15.9	10.9
Race	American Indian/Alaska Native	0.0	0.0	0.3
	Asian	33.3	34.9	38.4
	Hispanic or Latino	0.0	0.0	1.3
	Native Hawaiian	0.0	18.6	16.7
	Other Pacific Islander	0.0	9.3	3.3
	White	66.7	18.6	25.2
	Mixed	0.0	18.6	14.8
Age	Less than 25 years	0.0	0.0	0.3
	25-34 years	66.7	2.3	10.9
	35-44 years	0.0	18.2	11.6
	45-54 years	0.0	20.5	22.8
	55-64 years	33.3	34.1	32.2
	More than 64 years	0.0	25.0	22.2
Household income	Less than \$10,000	0.0	2.3	2.6
	\$10,000-\$24,999	0.0	14.0	10.2
	\$25,000-\$49,999	0.0	27.9	19.8
	\$50,000-\$99,999	0.0	32.6	41.3
	\$100,000 or more	100.0	23.3	26.1
Education	Less than high school	0.0	6.8	5.1
	High school graduate	33.3	34.1	26.7
	Some college or associate's degree	33.3	50.0	45.4
	Bachelor's degree or higher	33.3	9.1	22.8

Table 10 shows the vessel characteristics by fisherman type. Because only two offshore handline fishermen reported their vessel characteristics, we cannot display the average values due to confidentiality concerns. One thing we can verify is that the boat lengths of the two offshore handline fishermen were both over 40 feet, which matches the profile described in Itano (1999) and Hamilton and Huffman (1997). When comparing full-time and part-time commercial fishermen, full-time commercial fishermen's vessels tended to be larger, more powerful, a little older, more expensive, with longer ownership of the vessel. Full-time commercial fishermen never had non-family members use their boat without being present themselves, whereas 12% of part-time commercial fishermen had non-family members use their boat.

Table 10. Vessel characteristics by fisherman type (mean, standard error, median, and percentage of responses)

		Offshore handline	Full-time commercial	Part-time commercial
Boat length	Number of respondents (n)	*	43	296
	Mean	*	26.1	22.8
	Standard error	*	1.2	0.3
	Median	*	25.0	22.0
Boat horsepower	Number of respondents (n)	*	43	291
	Mean	*	298.3	211.1
	Standard error	*	32.1	9.0
	Median	*	230.0	190.0
Age of boat (years)	Number of respondents (n)	*	42	274
	Mean	*	25.9	23.5
	Standard error	*	2.4	0.7
	Median	*	27.0	24.0
Current boat ownership (years)	Number of respondents (n)	*	40	283
	Mean	*	15.3	12.2
	Standard error	*	1.9	0.6
	Median	*	13.5	9.0
Boat purchase price (\$)	Number of respondents (n)	*	38	287
	Mean	*	61,863	38,213
	Standard error	*	11,021	2,532
	Median	*	40,000	25,000
Boat current market value (\$)	Number of respondents (n)	*	39	274
	Mean	*	65,744	42,096
	Standard error	*	9,460	2,754
	Median	*	40,000	30,000
Own boat that fish on	Number of respondents (n)	3	44	311
	\% Yes	100\%	98\%	95\%
Others used boat without you in the past 12 months	Number of respondents (n) \% of time	3	43	296
	0\%	33.3	100.0	88.2
	1\%-25\%	33.3	0.0	9.1
	26\%-100\%	33.3	0.0	2.7

* The number of respondents is less than 3; due to confidentiality concerns, responses are not presented.

Fishing activity characteristics differ greatly by fisherman type (Table 11). Offshore handline fishermen were the most active of the three groups over the past 12 months. Full-time commercial fishermen averaged one trip every 5 days, and part-time commercial fishermen averaged one trip every 11 days. All offshore handline fishermen used pelagic handline gear, whereas troll was used by the majority of full-time and part-time commercial fishermen. The full-time and part-time commercial fishermen also used pelagic handline and bottomfish handline gear, with heavier use of these gears by the full-time commercial fishermen. Offshore handline fishermen fished almost exclusively in federal waters. Full-time and part-time commercial fishermen were more active within state waters, but still spent more than 40% of their time in federal waters. Full-time commercial fishermen tended to use more gear types than offshore handline fishermen. Part-time commercial fishermen relied more heavily on Fish Aggregating Devices (FADs) than the other two groups, and offshore handline fishermen had more people on board.

Table 11. Fishing activity characteristics by fisherman type (percentage of responses and mean)

	Offshore handline	Full-time commercial	Part-time commercial
Number of BOAT fishing trips in the past 12 months (\%)			
Number of respondents (n)	3	44	311
Fewer than 25 trips	33.3	18.2	43.1
25-49 trips	33.3	13.6	31.5
50-99 trips	0.0	36.4	17.4
100-200 trips	0.0	22.7	7.7
More than 200 trips	33.3	9.1	0.3
Mean	119	72	32
Number of gear used in BOAT fishing trips in the past 12 months (\%)			
Number of respondents (n)	3	44	311
One	33.3	22.7	19.0
Two	66.7	34.1	51.8
Three	0.0	29.5	20.6
Four	0.0	6.8	7.1
Five or more	0.0	6.8	1.6
Mean	1.7	2.4	2.2
Gear usage in BOAT fishing trips in the past 12 months (\%) 2.2			
Number of respondents (n)	3	44	311
Troll	33.3	70.5	82.6
Pelagic handline	100.0	50.0	37.6
Bottomfish handline	0.0	47.7	41.2
Spear	0.0	13.6	15.4
Net	0.0	18.2	6.4
Other	33.3	15.9	12.9
Percent of your fishing trips occurred in state and federal jurisdiction (\%)			
Number of respondents	3	42	297
State waters ${ }^{1}$	8.3	54.5	58.2
Federal waters ${ }^{1}$	91.7	45.5	41.8
Percent of fishing trips fished at Fish Aggregating Devices (\%)			
Number of respondents (n)	3	44	309
0\%	33.3	25.0	16.8
1\%-25\%	33.3	36.4	32.4
26\%-50\%	0.0	13.6	21.4
51\%-75\%	33.3	13.6	19.1
76\%-100\%	0.0	11.4	10.4
Mean percentage, exclude 0^{1}	37.0	37.3	39.6
Number of people (including yourself) on board for an average trip (\%)			
Number of respondents (n)	3	39	283
One	0.0	56.4	20.5
Two	0.0	33.3	49.5
Three	66.7	7.7	20.8
Four	33.3	0.0	6.7
Five or more	0.0	2.6	2.5
Mean	3.3	1.6	2.2

${ }^{1}$ Calculated using the medians of the response bins.

Fish Landings

To evaluate the representativeness of the offshore handline fishermen's survey responses, we compared the total landings reported to HDAR by all offshore handline fishermen in the survey population (11) with the landings of pelagic fish, bottomfish, and reef fish reported in the survey
by our three offshore handline survey respondents. All three offshore handline respondents reported the highest category of landing bin ($>1,000 \mathrm{lb}$) and stated their actual landings. The State of Hawaii landings data are available in HDAR's Fishermen Reporting System (FRS). We used FRS data from July 2013 to June 2014 to match the 12 months recall in our surveys (first sent out in early July 2014). Table 12 shows the overall distribution of landings reported to HDAR by the entire offshore handline population and the landings reported by our three survey respondents. The average landings reported by the three offshore handline respondents was substantially higher than the population ($153,008 \mathrm{lb}$ vs. $68,382 \mathrm{lb}$), meaning our survey captured the highliner. The standard error of mean for these three offshore handline respondents was also substantially higher than the population ($115,721 \mathrm{lb}$ vs. $23,017 \mathrm{lb}$), meaning our survey captured both the highliner and non-highliners. Due to the low number of respondents, it is inevitable that the survey data are subject to sampling bias; but the comparison in Table 12 does show that our survey data captured both highliner and non-highliners.

Table 12. Total landings for offshore handline fishermen in survey population from State of Hawaii DAR's Fishermen Reporting System vs. survey respondents

Total landings kept per fisherman (lb)	Offshore handline Population $\mathbf{(\%)}$	Survey Respondents $(\%)$
0	0.0	0.0
$1-20,000$	36.4	0.0
$20,001-100,000$	36.4	66.7
More than 100,000	27.3	33.3
Mean	68,382	153,008
Standard error	23,017	115,721
Median	32,046	50,000
Number of fishermen	11	3

Note: The offshore handline population included all species landings from boat trips in the State of Hawaii DAR's fishermen reporting system from July 2013 to June 2014. Survey responses only included landings for pelagic fish, bottomfish, and reef fish reported in the survey.

Table 13 shows the survey reported landings of pelagic fish, bottomfish, and reef fish by fisherman type. Please note that due to the small sample size and large discrepancies in landings between the offshore handline population and the sample as shown in Table 12, the actual landings by offshore handline fishermen were subject to large variations. Nevertheless, their landings were substantially larger than full-time and part-time commercial fishermen, on both an annual and per trip basis. Offshore handline fishermen caught over $150,000 \mathrm{lb}$ of fish a year and averaged $1,900 \mathrm{lb}$ per trip. Full-time commercial fishermen, on average, landed almost $12,000 \mathrm{lb}$ of fish annually, vs. $3,000 \mathrm{lb}$ by part-time commercial fishermen. Per trip, full-time commercial fishermen landed about 160 lb vs. 100 lb by part-time commercial fishermen. Almost all offshore handline fishermen's landings were pelagic fish (99.9\%), with bottomfish representing only 0.005% of total catch. Full-time and part-time commercial fishermen's landings showed more variety of fish types. Pelagic fish were still the major target for both full-time and part-time commercial fishermen, but bottomfish and reef fish comprised 29% of full-time commercial fishermen's catch and 18% of part-time commercial fishermen's catch.

Table 13. Landings by total weight and species group under each fisherman type (percentage of responses, mean, and median)

		Offshore handline	Full-time commercial	Part-time commercial
	Number of respondents (n)	3	44	311
Annual landings of pelagic fish, bottomfish, and reef fish				
	None (\%)	0.0	0.0	1.3
	$1-50 \mathrm{lb}(\%)$	0.0	2.3	1.9
	$51-100 \mathrm{lb}(\%)$	0.0	0.0	3.2
	101-500 lb (\%)	0.0	13.6	20.6
	501-1,000 lb (\%)	0.0	0.0	26.4
	More than 1,000 lb (\%)	100.0	84.1	46.6
	Mean (lb) ${ }^{1}$	153,008	11,653	3,032
	Median (lb)	50,000	5,588	850
Average per trip landings of pelagic fish, bottomfish, and reef fish				
	None (\%)	0.0	0.0	1.3
	1-20 lb (\%)	0.0	13.6	21.5
	$21-50 \mathrm{lb}$ (\%)	0.0	25.0	33.1
	$51-100 \mathrm{lb}(\%)$	0.0	20.5	21.9
	More than $100 \mathrm{lb}(\%)$	100.0	40.9	22.2
	Mean (lb) ${ }^{1}$	1,916	161	98
	Median (lb)	1,389	84	40
Annual landings of pelagic fish	Mean (lb) ${ }^{1}$	153,000	8,260	2,518
	Median (lb)	50,000	2,350	750
Annual landings of bottomfish	Mean (lb) ${ }^{1}$	8	1,596	302
	Median (lb)	0	300	25
Annual landings of reef fish	Mean (lb) ${ }^{1}$	0	1,797	239
	Median (lb)	0	188	0
Percentage of landings from pelagic, bottomfish, reef fish				
	Pelagic fish (\%)	99.9	70.9	82.3
	Bottomfish (\%)	0.005	13.7	9.9
	Reef fish (\%)	0.0	15.4	7.8

${ }^{1}$ Calculated using the medians of the response bins.
Table 14 shows the catch disposition by fisherman type. The catch disposition of the fisheries is the best demonstration of the value of the fisheries as a "composite of economic, dietary, and cultural dimensions" (Glazier et al. 2001). For all fisherman types, a substantial amount of catch was kept for home consumption or given away to friends and family, although major portions of the catch (74% for offshore handline fishermen, 73% for full-time commercial fishermen, and 70% for part-time commercial fishermen) were sold in the market. Offshore handline fishermen consumed 7% of their catches at home, and 8% were given away to friends and family; full-time commercial fishermen consumed 12% of their catches at home, and 9% were given away to friends and family; and part-time commercial fishermen consumed 14% of their catches at home, and 12% were given away to friends and family.

Table 14. Catch disposition by fisherman type (percentage of responses)

	Percentage of response	Offshore handline	Full-time commercial commercial	
Catch distribution	Number of respondents (n)	3	35	269
	I kept all the fish I caught (\%)	0.0	34.3	14.5
	I kept/received some \% of total fish caught (\%)	33.3	8.6	25.7
	I kept/ received some \% of trip revenue (\%)	0.0	8.6	10.8
	Don't know/different every time (\%)	33.3	48.6	48.3
	Other (\%)	33.3	0.0	0.7
	Percentage of catch			
Catch disposition	Number of respondents (n)	3	43	293
	Caught and released (\%)	11.7	5.9	5.3
	Given away (\%)	7.6	9.0	11.8
	Consumed at home (\%)	6.9	11.7	13.5
	Sold (\%)	73.8	73.4	69.5

Market Participation

Wholesalers and auctions were the most commonly used market outlets for the offshore handline and the commercial fishermen. Full-time and part-time commercial fishermen were also reliant on restaurants or stores. Table 15 shows the market participation by fisherman type.

Table 15. Market participation by fisherman type (percentage of responses)

		Offshore handline	Full-time commercial commercial	
Sold fish	Number of respondents (n)	3	44	311
	Yes (\%)	100.0	100.0	100.0
Market outlet	Number of respondents (n)	3	44	310
	Wholesaler/auction (\%)	100.0	86.4	69.4
	Restaurants/stores (\%)	66.7	50.0	45.2
	Roadside/farmers' market (\%)	100.0	11.4	9.0
	Friends/neighbors/coworkers (\%)	66.7	27.3	30.0
	Other (\%)	33.3	2.3	0.0

Value of Fish Sold

To determine whether the fish sold values reported in our survey are representative of all offshore handline fishermen, we compared the survey responses vs. the survey population (HDAR dealer reports). ${ }^{1}$ Table 16 shows the revenue distributions (in three groups) for the survey responses vs. the survey population of offshore handline fishermen. None of the three offshore handline fishermen who responded to the survey categorized their sales in the lowest category ($\leq \$ 50,000$), whereas 46% of the entire offshore handline population are in this category according to the HDAR dealer report. The average value of fish sold reported by the three offshore handline respondents was $\$ 460,000$, vs. $\$ 133,619$ for the population. The standard error of mean for the three offshore handline respondents was also substantially higher than the

[^0]population ($\$ 370,045$ vs. $\$ 42,684$). This implies that the survey sample skewed to the high revenue distribution.

Table 16. Revenue from fish sold for offshore handline fishermen in survey population from State of Hawaii DAR's Dealer Reporting System vs. survey respondents

Revenue from fish sold per fisherman (\$)	Offshore handline Population $(\%)$	Survey Respondents $(\%)$
$\$ 1-\$ 50,000$	45.5	0.0
$\$ 50,001-\$ 200,000$	27.3	66.7
Over $\$ 200,000$	27.3	33.3
Mean $(\$)$	133,619	460,000
Standard error $(\$)$	42,684	370,045
Median (\$)	58,105	100,000
Number of fishermen	11	3

Table 17 shows the value of fish sold by fisherman type in our PIFSC survey. Due to the small sample size of the offshore handline fishermen, caution is required in interpreting the results. Regardless of using the survey results or the dealer report data, offshore handline fishermen reported substantially higher values of fish sold per year $(\$ 460,000)$ and per trip $(\$ 5,541)$ compared with full-time and part-time commercial fishermen, and over 90% of their fish sold was from pelagic fish sales. Full-time commercial fishermen received almost $\$ 40,000$ in fish sales annually and $\$ 600$ per trip, vs. $\$ 8,600$ annually and $\$ 250$ per trip for part-time commercial fishermen. Pelagic fish also accounted for the highest portion (55% and over) of fish sales for both full-time and part-time commercial fishermen. In addition, full-time and part-time commercial fishermen received 27% and 21% of fish revenue from bottomfish sales, respectively. Despite the high revenue derived from their fish sales, two of the three offshore handline fishermen in the sample reported that fishing contributed only 1% to 25% of their personal income. Fish sales accounted for a quarter or less of personal income for 33% of the full-time commercial fishermen and 73% of the part-time commercial fishermen.

Table 17. Value of fish sold by fisherman type (percentage of responses, mean, and median)

		Offshore handline	Full-time commercia	Part-time commercial
Value of fish sold	Number of respondents (n)	3	44	311
	Percentage of responses			
	\$1-\$100	0.0	0.0	1.0
	\$101-\$500	0.0	0.0	12.9
	\$501-\$1,000	0.0	2.3	12.5
	\$1,001-\$2,000	0.0	4.5	10.0
	\$2,001-\$5,000	0.0	18.2	24.4
	\$5,001-\$10,000	0.0	6.8	16.7
	\$10,001-\$20,000	0.0	11.4	10.3
	\$20,001-\$50,000	0.0	25.0	11.3
	Over \$50,000	100.0	31.8	1.0
	Mean (\$) ${ }^{1}$	460,000	39,114	8,588
	Median (\$)	100,000	35,000	3,500
Value of fish sold per trip	Percentage of responses			
	< $=\$ 50$	0.0	13.6	26.7
	\$51-\$100	0.0	9.1	24.1
	\$101-\$500	0.0	40.9	37.9
	Over \$500	100.0	36.4	11.3
	Mean (\$) ${ }^{1}$	5,541	600	252
	Median (\$)	3,846	313	100
Percentage of value of fish sold from pelagic, bottomfish, reef fish, and other				
	Number of respondents (n)	3	43	294
	Pelagic fish (\%)	94.2	55.1	68.2
	Bottomfish (\%)	0.7	27.3	20.7
	Reef fish (\%)	0.0	8.0	7.7
	Other (\%)	5.1	9.6	3.4
Percentage of personal income came from the sale of fish				
	Number of respondents (n)	3	43	308
	1\%-25\% (\%)	66.7	32.6	72.7
	26\%-50\% (\%)	0.0	9.3	16.2
	51\%-75\% (\%)	0.0	18.6	8.1
	76\%-100\% (\%)	33.3	39.5	2.9
	Mean percentage ${ }^{1}$	37.3	53.8	22.5

${ }^{1}$ Calculated using the medians of the response bins.

Characteristics by Annual Net Return

To examine whether the characteristics of fishermen differ by their economic performance, fishermen were divided into two groups; those who earned negative annual net returns and those who earned positive annual net returns. There is not much difference in demographics between the two groups for either full-time or part-time commercial fishermen. Table 18 shows the details.

Table 18. Fishermen demographics for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net return (percentage of responses)

		Full-time commercial		Part-time commercial	
Percentage of responses		Negative annual net return	Positive annual net return	Negative annual net return	Positive annual net return
	Number of respondents (n)	22	22	246	65
Island	Oahu	31.8	22.7	35.0	21.5
	Hawaii	40.9	36.4	37.0	50.8
	Maui	9.1	22.7	15.4	18.5
	Kauai	13.6	18.2	11.8	7.7
Race	American Indian/Alaska Native	0.0	0.0	. 4	0.0
	Asian	45.5	22.7	35.8	44.6
	Hispanic or Latino	0.0	0.0	1.2	1.5
	Native Hawaiian	9.1	27.3	17.1	13.8
	Other Pacific Islander	9.1	9.1	2.4	6.2
	White	18.2	18.2	26.4	18.5
	Mixed	18.2	18.2	14.6	13.8
Age	Less than 25 years	0.0	0.0	. 4	0.0
	25-34 years	0.0	4.5	9.3	16.9
	35-44 years	13.6	22.7	11.4	12.3
	45-54 years	22.7	18.2	22.0	26.2
	55-64 years	31.8	36.4	33.3	27.7
	More than 64 years	31.8	18.2	23.6	16.9
Income	Less than \$10,000	4.5	0.0	2.8	1.5
	\$10,000-\$24,999	22.7	4.5	9.8	10.8
	\$25,000-\$49,999	27.3	27.3	18.3	23.1
	\$50,000-\$99,999	27.3	36.4	40.7	38.5
	\$100,000 or more	13.6	31.8	26.1	23.0
Education	Less than high school	0.0	13.6	5.7	3.1
	High school graduate	27.3	40.9	26.0	29.2
	Some college or associate's degree	59.1	40.9	45.9	43.1
	Bachelor's degree or higher	13.6	4.5	22.3	24.6

Table 19 shows the vessel characteristics for full-time and part-time commercial fishermen by their economic performance. The full-time commercial fishermen who earned positive net returns had larger, newer, more powerful vessels, with longer ownership and much higher value. However, the vessel characteristics were similar for part-time commercial fishermen with negative annual net returns and those with positive annual net returns.

Table 19. Vessel characteristics for full-time commercial fishermen and part-time commercial fishermen by negative and positive annual net returns (mean, standard error, median)

		Full-time commercial		Part-time commercial	
		Negative annual net return	Positive annual net return	Negative annual net return	Positive annual net return
Boat length	Number of respondents (n)	21	22	238	58
	Mean	24.6	27.5	22.9	22.7
	Standard error	1.4	1.9	0.4	0.6
	Median	23.0	26.0	22.0	22.4
Boat horsepower	Number of respondents (n)	21	22	234	57
	Mean	245.0	349.1	213.1	202.9
	Standard error	42.0	46.5	10.4	16.4
	Median	188.0	280.0	190.0	180.0
Age of boat (years)	Number of respondents (n)	21	21	221	53
	Mean	28.6	23.1	23.6	22.8
	Standard error	3.7	3.0	0.8	1.7
	Median	29.0	25.0	25.0	21.0
Current boat ownership (years)	Number of respondents (n)	19	21	228	55
	Mean	14.0	16.5	12.1	12.9
	Standard error	2.6	2.7	0.7	1.7
	Median	10.0	18.0	9.0	9.0
Boat purchase price (\$)	Number of respondents (n)	18	20	230	57
	Mean	52,917	69,915	38,577	36,742
	Standard error	18,868	12,470	2,937	4,741
	Median	36,000	56,000	25,000	20,000
Boat current market value (\$)	Number of respondents (n)	19	20	221	53
	Mean	59,842	71,350	41,225	45,726
	Standard error	14,273	12,739	3,215	4,808
	Median	40,000	50,000	26,000	40,000

Table 20 shows the fishing activity characteristics for full-time and part-time commercial fishermen by their economic performance. Fishing activity was similar between the groups, except that full-time commercial fishermen who used bottomfish handline gear, were more active in federal waters, and had two or more fishermen on board were more likely to earn positive net returns. Part-time commercial fishermen who had more boat fishing trips in the past 12 months, used troll and pelagic handline gear, and fished alone were more likely to earn positive net returns.

Table 20. Fishing activity characteristics for full-time commercial fishermen and part-time commercial fishermen by negative and positive annual net returns (percentage of responses and mean)
$\left.\begin{array}{lrr|rc}\hline & & \text { Full-time commercial } & \text { Part-time commercial } \\ \hline & \begin{array}{c}\text { Negative } \\ \text { annual net }\end{array} & \begin{array}{c}\text { Positive } \\ \text { annual net } \\ \text { return }\end{array} & \begin{array}{c}\text { Negative } \\ \text { return }\end{array} & \begin{array}{c}\text { Positive } \\ \text { annual net } \\ \text { return }\end{array} \\ \text { return }\end{array}\right]$

Catch rates for full-time commercial fishermen who earned positive net returns were about 3.5 times higher per year and per trip when compared with those who did not earn positive net returns. On average, full-time commercial fishermen who earned positive net returns caught $18,151 \mathrm{lb}$ of fish per year and 262 lb per trip vs. those who did not earn positive net returns who caught $5,156 \mathrm{lb}$ per year and 78 lb per trip. Pelagic fish were the major landings for fishermen with different economic performances, but full-time commercial fishermen who earned positive net returns tended to have a higher portion of catch from bottomfish and reef fish. Part-time commercial fishermen who earned positive net returns caught an average of 5,204 lb per year and 180 lb per trip, vs. those who did not earn positive net returns who caught $2,459 \mathrm{lb}$ per year and 103 lb per trip. The differences between those part-time commercial fishermen who earned positive net returns and those who did not were about two times higher catch per year and per trip. Table 21 shows the details of landings for full-time and part-time commercial fishermen by positive and negative economic performances.

Table 21. Landings by total weight and species group for full-time commercial fishermen and parttime commercial fishermen, and by negative and positive annual net return (percentage of responses, mean, and median)

[^1]Regarding catch disposition, full-time commercial fishermen who earned positive net returns tended to sell a higher portion of their catch than those who earned negative net returns. Portions retained for home consumption or to be given away were similar for both groups. Part-time commercial fishermen who earned positive net returns sold higher portions of their catch, while those who did not earn positive net returns tended to retain higher portions of their catch for home consumption or to be given away (Table 22).

Table 22. Catch disposition for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net return (percentage of catch)

		Full-time commercial Part-time commercial			
		Negative annual ne return	Positive annual net return	Negative annual ne return	Positive annual net return
Catch disposition	Number of respondents (n)	22	22	230	63
	Caught and released (\%)	7.3	5.5	5.2	5.4
	Given away (\%)	8.7	9.1	12.9	9.6
	Consumed at home (\%)	12.9	11.4	15.7	9.5
	Sold (\%)	71.1	74.0	66.1	75.4

Market participation tended to differ somewhat between those who earned positive net returns and those who did not. Table 23 shows the market participation for full-time and part-time commercial fishermen by economic performance. Full-time commercial fishermen who earned positive net returns tended to use a larger variety market outlets more than those who did not. Part-time commercial fishermen who earned positive net return tended to use wholesalers, auctions, restaurants, and stores more often.

Table 23. Catch disposition for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net return (percentage of catch)

		Full-time commercial		Part-time commercial	
		Negative annual net return	Positive annual net return	Negative annual net return	Positive annual net return
Sold fish	Number of respondents (n)	22	22	246	65
	Yes (\%)	100.0	100.0	100.0	100.0
Market outlet	Number of respondents (n)	22	22	245	65
	Wholesaler/auction (\%)	77.3	95.5	68.6	72.3
	Restaurants/stores (\%)	31.8	68.2	44.1	49.2
	Roadside/farmers' market (\%)	9.1	13.6	9.4	7.7
	Friends/neighbors/coworkers (\%)	31.8	22.7	31.4	24.6
	Other (\%)	0.0	4.5	0.0	0.0

The value of fish sold by full-time and part-time commercial fishermen as analyzed by their economic performance is shown in Table 24. Full-time commercial fishermen who earned positive net returns had higher catch rates and, therefore, higher values of fish sold than those who did not earn positive net returns. The differences in values between the two groups were about 4 times higher per year and per trip. Full-time commercial fishermen who earned positive net returns received $\$ 63,375$, on average, from fish sold per year and $\$ 986$ per trip, vs. those who did not earn positive net returns who received $\$ 14,852$ per year and $\$ 265$ per trip. The positive net return group also tended to receive more revenue from pelagic fish and species other than bottomfish and reef fish. More than half of those who earned positive net returns had 76% to
100% of their personal income from fish sales, whereas 48% of those who did not earn positive net returns received only 1% to 25% of their personal income from fish sales. The value of fish sold by part-time commercial fishermen earning positive net returns was about 4 times higher per year and 3.5 times higher per trip than those of part-time commercial fishermen who did not earn positive net returns. The positive net return part-time fishermen received $\$ 21,156$, on average, from fish sales per year and $\$ 732$ per trip, vs. those who did not earn positive net revenue, with fish sales of $\$ 5,268$ per year and $\$ 210$ per trip. Those who earned positive net returns had a higher portion of their fish sold from bottomfish sales. Part-time commercial fishermen with positive net returns also had a higher portion of their personal income from fish sales (average 35%) than those who did not earn positive net returns (average 19\%).

Table 24. Value of fish sold for full-time commercial fishermen and part-time commercial fishermen, by negative and positive annual net returns (percentage of responses, mean, and median)

		Full-time co	ommercial	Part-time	commercial
		Negative annual net return	Positive annual net return	Negative annual ne return	Positive annual net return
Value of fish sold	Number of respondents (n)	22	22	246	65
	Percentage of responses				
	\$1-\$100	0.0	0.0	1.2	0.0
	\$101-\$500	0.0	0.0	16.3	0.0
	\$501-\$1,000	4.5	0.0	15.9	0.0
	\$1,001-\$2,000	9.1	0.0	11.4	4.6
	\$2,001-\$5,000	36.4	0.0	28.5	9.2
	\$5,001-\$10,000	9.1	4.5	14.2	26.2
	\$10,001-\$20,000	22.7	0.0	7.7	20.0
	\$20,001-\$50,000	4.5	45.5	4.9	35.4
	Over \$50,000	13.6	50.0	0.0	4.6
	Mean (\$) ${ }^{1}$	14,852	63,375	5,268	21,156
	Median (\$)	5,500	44,000	3,500	15,000
Value of fish sold per trip	Percentage of responses				
	<=\$50	27.3	0.0	32.9	3.1
	\$51-\$100	18.2	0.0	29.3	4.6
	\$101-\$500	45.5	36.4	32.1	60.0
	Over \$500	9.1	63.6	5.7	32.3
	Mean (\$) ${ }^{1}$	265	986	210	732
	Median (\$)	196	919	140	517
Percentage of value of fish	sold from pelagic, bottomfish	, and other			
	Number of respondents (n)	21	22	230	64
	Pelagic fish (\%)	50.3	56.2	72.4	64.3
	Bottomfish (\%)	42.7	23.8	15.9	25.1
	Reef fish (\%)	6.2	8.4	8.5	6.9
	Other (\%)	0.8	11.6	3.3	3.6
Percentage of personal inco	ome came from the sale of fish				
	Number of respondents (n)	21	22	243	65
	1\%-25\% (\%)	47.6	18.2	80.2	44.6
	26\%-50\% (\%)	9.5	9.1	13.2	27.7
	51\%-75\% (\%)	19.0	18.2	4.5	21.5
	76\%-100\% (\%)	23.8	54.5	2.1	6.2
	Mean percentage ${ }^{1}$	42.1	64.9	19.3	34.6

[^2]
Conclusion and Discussion

This is the first comprehensive report that assesses vessel level economic performance of the offshore handline fishery and the Hawaii small boat commercial fishery on an annual basis, using the Hawaii small boat survey data collected in 2014. Three types of fishermen were examined, including offshore handline, full-time commercial, and part-time commercial. Each type of fisherman performed differently in terms of net returns. On average, offshore handline fishermen and full-time commercial fishermen had profitable operations on an annual basis. Two-thirds of full-time commercial fishermen received positive net revenues, and half of them achieved positive net returns per year. The numbers were lower for part-time commercial fishermen, with 41% of them receiving positive net revenues and 21% achieving positive net returns. A large portion of fishermen who self-identified as commercial fishermen did not receive any net income from fish sales after taking into account both trip costs and fixed costs. This could be partially explained by their disposition patterns, as 21% and 25%, respectively, of full-time and part-time commercial fishermen's catches were for home consumption or given away. These non-commercial purposes for catching fish are important motivations for small boat fishing in Hawaii. There may be other reasons for commercial small boat fishermen operating at a loss but we do not have the information, and this warrants further study. If we assumed that these non-commercial catches retained for home consumption or given away had been sold commercially, the economic performance of the Hawaii small boat fishery would improve, with 64% of full-time commercial fishermen and 36% of part-time commercial fishermen earning positive net returns.

It is important to note that response to the survey was voluntary, and the definition of full-time and part-time commercial fishermen was self-defined. From the results of the study, it is notable that the net returns to the Hawaii small boat commercial fishery were relatively low. For those who did not earn positive net returns, monetary rewards may not be their main purpose of fishing, and further study is needed to examine the contribution of non-commercial aspects of fishing.

The survey did not ask the exact number of boat fishing trips taken in the past 12 months; instead, six broad response bins were given. Therefore, the total annual number of trips are estimated which may affect the accuracy of the annual net return estimation. The number of trips by gear type is estimated from two survey questions; the total number of boat fishing trips and the percent of each gear type used in the past 12 months. The number of trips directly affects the annual trip costs and the net return estimation. When we compared the number of trips generated using medians of survey response bins with the number of trips reported to the HDAR, we found that the number of trips generated from medians of survey response bins were often higher. Therefore, instead of using the medians, we compared the number of trips using medians of survey response bins with fishermen's reported number of trips to HDAR between July 1, 2013 and June 30, 2014, and adjusted the number of trips based on a set of rules as discussed in the Methodology section. We found the estimated annual number of trips using this set of rules that incorporated both survey responses and HDAR records produced reasonable estimations of annual trip costs and annual net return; therefore, we adopted this estimation of number of trips in this report.

Since no studies were previously conducted to evaluate the economic performance of the offshore handline fishery and the Hawaii small boat commercial fishery on an annual basis, this report provides an important baseline economic indicator for those fisheries. This information is crucial for fishery managers in order to evaluate potential economic impacts from regulatory alternatives in these fisheries.

Acknowledgements

We want to thank many people who contributed to the success of this study. First and most importantly, we would like to thank all the fishermen who participated in this study and contributed valuable information regarding their fishing activities, income, and fishing costs. Without their participation, we could not provide an accurate description of the Hawaii small boat commercial fishery. We also want to thank Ed Watamura and Roy Morioka of the Waialua Boat Club who allowed us to introduce the survey during their club meeting. Moreover, we wish to thank Reginald Kokubun and Alton Miyasaka from the State of Hawaii Division of Aquatic Resources who helped us at the planning stage of the study and provided the mailing list of the fishermen. Thank you also to Justin Hospital and Christopher Hawkins for reviewing and providing feedback on the survey instruments and brochure, and to Kathleen Uno who designed the beautiful survey cover. Last, but not least, we wish to thank our graduate research assistant, Jonathan Sweeney, for his hard work in survey distribution, database development, and data entry.

Literature Cited

Chan HL, Pan M. 2017. Economic and social characteristics of the Hawaii small boat fishery 2014. U.S. Dept of Commer., NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-63, 107p.

Glazier E, Shackeroff J, Carothers C, Stevens J, and Scalf R. 2009. A report on historic and contemporary patterns of change in Hawaii-based pelagic handline fishing operations final report. SOEST Publication 09-01, JIMAR Contribution 09-370, 78p.

Hamilton MS, Huffman SW. 1997. Cost-earnings study of Hawaii's small boat fishery, 19951996. SOEST Publication 97-06, JIMAR Contribution 97-314, 102p.

Hospital J, Beavers C. 2012. Economic and social characteristics of bottomfish fishing in the Main Hawaiian Islands. Pacific Islands Fisheries Science Center Administrative Report H-12-01, 44p. + Appendices.

Hospital J, Bruce SS, and Pan M. 2011. Economic and social characteristics of the Hawaii small boat pelagic fishery. Pacific Islands Fisheries Science Center Administrative Report H-11-01, 48p. + Appendices.

Itano, DG. 1999. Hawaii offshore handline fishery: a seamount fishery for juvenile bigeye tuna. 11th Meeting of the Secretariat of the Pacific Community's Standing Committee on Tuna and Billfish 6 Jun 1999. Online: https://spccfpstore1.blob.core.windows.net/digitallibrarydocs/files/f4/f47f67cf305e48cd59da173d175848fe.pdf [accessed 22 August 2017].

Pacific Island Fisheries Science Center. 2017. 1987-2015 Landings of all pelagic species caught by longline, MHI troll, MHI handline, offshore handline, aku boat. Online at https://www.pifsc.noaa.gov/wpacfin/hi/Data/Pelagic/hpel3.htm [accessed 23 August 2017].

State of Hawaii. 2013. Division of Business, Economic Development and Tourism. 2013 State of Hawaii Data Book. Online at http://dbedt.hawaii.gov/economic/databook/db2013/ [accessed 14 August 2015].

Appendices

Appendix A. Survey Questionnaire

Hawaii Small Boat Survey 2014

3. In the past 12 months, what percent of your BOAT fishing trips were: (please check one for each gear type)					
	0\%	1\%-25\%	26\% - 50%	51\%\%-75\%	76\%\%-100\%
Trolling	\square	\square	\square	\square	\square
Handline for pelagic species	\square	\square	\square	\square	\square
Handiline for bottomfish species	\square	\square	\square	\square	\square
Spearfishing	\square	\square	\square	\square	\square
Nets	\square	\square	\square	\square	\square
Other geart please specily:					
	\square	\square	\square	\square	\square
4. In the past 12 months, did you use a green-stick as one of the gear types?					
$\square_{\text {YES }}$					
5. Approximately how many NON-BOAT fishing (shoreline) trips did you take in the past 12 months?					
$\square 0$					
\square Fever than 25 trips					
$\square 25-49$ trips					
$\square_{\text {00-99 trips }}$					
$\square_{100-200}$ trips					
\square More than 200 trips					
6. In the past 12 months, what percent of your NON-BOAT fishing (shoreline) trips were: (please check one for each gear type)					
Rod and reel (pole)	0\%	$1 \%-25 \%$	$26 \%-5 \%$	$51 \%-75 \%$	$76 \%-100 \%$
Spearishing	\square	\square	\square	\square	\square
Castithrow net	\square	\square	\square	\square	\square
Other gear, please specity:					
	\square	\square	\square	\square	\square

SECTION B. MARKET PARTICIPATION

14. How do you define yourself as a fisherman? (check one that applies)	
$\square_{\text {Pull-time commercial }}$	$\square \square_{\text {Purely recreational }}$
\square Part-time commercial	$\square \square_{\text {subsistence }}$
\square Recreational expense	\square culture
	\square other, please specity

15. In the past 12 months, how were the catches distributed? (please check one and estimate percentage)

16. In the past 12 months, did you ever sell any of the fish you caught?
\square Yes \longrightarrow Go to 018
\square NO \longrightarrow Go to 022
If you sold any of your fish.
17. In the past 12 months, where did you sell your fish?
\square Wholesaleriauction
\square Restaurants/stores
\square Roadsideftarmers' market
\square Friends'neighbors'coworkers
\square other, please specity
18. What is the length of your boat? ___feet
19. What is the total hersepower? ___ hp
20. In what year was the boat built?
21. In what year did you purchase the boat you fish on? (th homebuilt - when did you complete it?)
22. How much did you pay to purchase the boat you fish on? $\$$ \qquad (th homebuilt - how much did it cost to bulid it?)
23. What is the approximate market value of your boat? (considering age and current condition and including motor(s) and trailer) S \qquad

SECTION D. YOUR FISHING TRIP COSTS
We now want to understand your per trip costs for fisking.
Please remember that all your answers are strictly confidential.
30. In the past 12 months, what was the primary gear usage for your most common trip (please check one)?

Trolling Handline for pelagic species Handline for bottomfish species	Spearfishing Nets Other gear, specity
30a. on average, how much money did you spend on your most common (ques	
Iype of Expenditure	Trip Expenditure
Boat tuel	
Truck fuel (round-trip)	
Oil	
lce	
Bait	
Food and beverage	
Daily maintenance and repair	
Other, please specity:	
\$	

If you sold any of your fish.. 19. In the past 12 months, what was the approximate value of all the fish you sold?				
		0, specity \$		
20. In the past 12 months, what percent of the value of fish sold (question 19) came from the sale of pelagic fish, bottomfish, and reef fish?				
0\%	1\%-25\%	26\%.50\%	51\%-75\%	76\%-100\%
Pelagic Fish $\quad \square$	\square	\square	\square	\square
Bottomfish \square	\square	\square	\square	\square
Reef fish \square	\square	\square	\square	\square
If you sold any of your fish...				
21. In the past 12 months, atter expenses, what percent of your personal income came from the sale of fish?				
1\%-25\%	26\% -50\%	51\%-75\%		100\%
\square	\square	\square		
SEC	ION C. YO	VESS		
In this section, we want to better understand the vessel and gear characteristics of the boat based fishery in Hawaif.				
22. Do you own the boat that you fish on?				
$\square \text { Yes } \longrightarrow \text { Go to } 023$				
If you own the boat that you fish on... 23. In the past 12 months, what percent of time did other people (other than family members) use the boat without you?				
0\% 1\%-25\%	20\%-50\%			76\%-100\%
$\square \square$	\square			\square

SECTION G. WHAT DO YOU THINK?

40. Do you have any suggestions for how Hawaii's fisheries should be managed or topics that you feel need urther study?
\qquad

Mahalo for participating in this survey.

 please use the enclosed postage paid return envelope to mail back your survey. The information you have provided will improve our understanding of the importance of fishing in Hawaii.
Would you like to receive a copy of the final report for this study? (all personal information will

 be kept strictly contidential)$\square_{\text {YES }}$
Name:
Address:
Email address:

May we contact you if we have any questions about your survey responses?
\square YES Phone: \quad best time to reach you:
$\square_{\text {NO }}$ (your phone number will be kept strictly confidential)
SECTION F. ABOUT YOU
Different people have different fishing experiences and different motivations for fishing.
The following questions help us to better understand these differencees.
33. What is your gender?
\square Male
\square
Female

[^0]: ${ }^{1}$ Marine fish dealers (which include any business that purchases fish directly from fishermen) are required to report data on seafood purchased from fishermen, including the fisherman from whom the dealer purchased the fish. These reports are submitted to HDAR monthly. The dealer data are compiled in HDAR's Dealer Reporting System (DRS).

[^1]: ${ }^{1}$ Calculated using the medians of the response bins.

[^2]: ${ }^{1}$ Calculated using the medians of the response bins.

